THE REACTION BETWEEN BENZYL CHLORIDE AND WATER.

By Toshizo TITANI and Katsuzo KURANO.

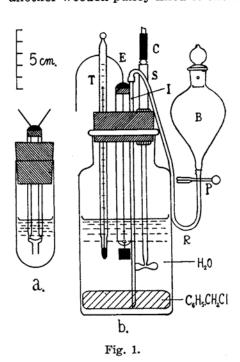
Received April 23rd, 1931. Published June 28th, 1931.

The heterogeneous reaction which takes place at a liquid-liquid interface has been studied by several workers. In the majority of these cases, however, at least one of the reactants is solute molecules or ions dissolved in two immiscible solvents.

The object of the following experiments is to investigate the case where the immiscible liquids themselves react with each other at there interface. The reaction chosen as one of such cases was the hydrolysis of benzyl chloride by water according to the equation:

$$C_6H_5 \cdot CH_2Cl + H_2O \rightarrow C_6H_5 \cdot CH_2OH + HCl.$$

This reaction has been already studied by G. Harker, (1) who observed rather remarkable facts that benzyl chloride is not acted on by steam but decomposed by water with constant velocity. The present authors were interested to investigate the course of the reaction with water phase as well as vapour phase, of which only the former reaction is here published as they are obliged to interrupt the experiment. Since benzyl chloride is known to be practically insoluble in water, it will be sufficient to take only the surface reaction in consideration. In the present experiment a known volume of distilled water has been placed on the top of benzyl chloride, the former being stirred with constant rate, and the concentration of hydrochloric acid in it has been determined frequently at different intervals by measuring its electrical conductivity.


Measurements.

A hard glass powder bottle of half liter capacity whose cross-sectional area is 40.0 sq. cm. was used as a reacton vessel. The vessel was closed with a cork stopper holding a thermometer (T), a platinum electrode (E), a small glass stirrer (S) and a fine glass tube (I), as is shown in Fig. 1, b. The two blades of the stirrer stand vertical so as not to disturb the interface of the two liquids.

A weighed quantity of 250 c.c. of distilled water is placed in the reaction vessel which is immersed right up to the neck in a water thermostat. On the other hand a pear shaped vessel (B) with a glass stopper, in which 50 c.c. of benzyl chloride (Schering-Kahlbaum's purest for scientific purposes) is placed, is also immersed in the thermostat. To the bottom opening of the above vessel (B) is connected a rubber tubing (R) with a rubber clip (P) and a glass tube (I), the latter being placed in the reaction vessel through the cork stopper. When the temperature becomes constant the pear shaped vessel (B) is somewhat lifted up and by opening the rubber clip (P) benzyl chloride is allowed to flow into the bottom of the reaction vessel. The tube (I) is then lifted slightly above the interface in order not to disturb it. The stirrer (S) is then started.

⁽¹⁾ J. Chem. Soc., 125 (1924) 500.

The upper end of the stirrer rod is connected through a short rubber tubing (C) co-axial with a pivot of a wooden pulley, which is coupled with another wooden pulley fixed to the axis of a large stirrer of the thermostat.

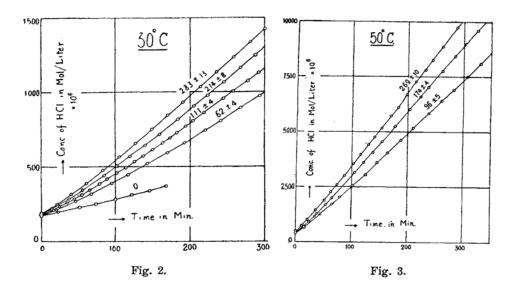
Since the thermostat-stirrer is driven by a small electric motor and regulated so as to rotate with constant rate (100 turns per min.), the rate of rotation of the glass stirrer in the reaction vessel can be controlled at will by choosing a pair of wooden pulleys having a suitable ratio of diameters.

The electrical conductivity of the aqueous layer was successively measured by means of a well calibrated Wheatstone's bridge with simultaneous record of time. The concentration of hydrochloric acid was calculated in mol/liter from the observed specific conductance by dividing it with the corresponding molecular conductance and multiplying with 1000. The viscosity of the reacted solutions was found to be identical with the hydrochloric acid solution of the same

concentration and distilled water in the limits of the experimental errors.

The necessary data of molecular conductance were determined by the writers at 30° and 50°C. The reaction vessel itself was used as a conductivity cell at 30°C., but as it required a considerable amount of solutions, a

30.0° C.


m	0.000168	0.0002958	0.0005915	0.001183	0.005915	0.001183	0.05915
Λ	450	449	447	450	448	441	423

50.0° C.

1	1						1
m	0.000333	0.000998	0.00333	0.00998	0.0333	0.0998	-
Λ	570	570	570	560	540	506	

small cell with the same electrode (shown in Fig. 1, a) was specially made for this purpose at 50° C. The values obtained are given in the following table, where m expresses the concentration of hydrochloric acid in mol/liter and Λ stands for the molecular conductance.

The conductivity measurement was started when the concentration of hydrochloric acid reached the lower limit of concentration in the control measurement of molecular conductance given above, namely m=0.000168 at 30.0° C. and m=0.000333 at 50.0° C. At first an experiment was done at 18° C. by using the molecular conductance data of Goodwin and Haskell, the the rate of reaction at this temperature was so small that it required whole day to reach the limit just mentioned. All the other experiments, therefore, were carried out at 30° and 50° C., where this period varied from two hours to half an hour according to the temperature and the speed of stirring. Some of the results of the experiments are shown, as examples, by the curves in Figs. 2 and 3, where the figure on each curve indicates the number of revolution of the stirrer per minute. Full data will be given in later tables.

It will be seen from these curves that the rate of increase of hydrochloric acid is largely affected by the speed of stirring and, moreover, it increases with time, tending to become constant gradually.

⁽¹⁾ Phys. Rev., 19 (1904), 369.

Results and Discussion.

The experimental results may be accounted for by assuming an adsorption film (A.F.) and a diffusion film (D.F.) in the aqueous part along the interface with benzyl chloride, as is shown in Fig. 4. These films may be

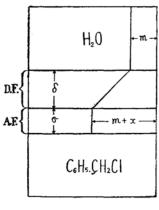


Fig. 4.

movable as a whole but any configurations in the interior of them are supposed to be just like as on solid adsorbents.

Since the reaction is a surface one and adsorbed molecules at the interface are supposed to hinder the progress of hydrolysis, its rate may be expressed by H-kx, where x denotes the concentration of adsorbed molecules of hydrochloric acid, H and k being constants at a given temperature. Let m express the concentration of hydrochloric acid in the bulk of aqueous layer whose volume is V, then the rate of increase of the total amount of hydro-

chloric acid in it is equal to $V\frac{dm}{dt}$, where t

denotes the time. The difference of the above two quantities may be equal to the rate of increase of hydrochloric acid in the adsorption film (A.F.), whose thickness is put as σ :

$$S\sigma \frac{d(m+x)}{dt} = H - kx - V \frac{dm}{dt}$$
,(1)

where S denotes the area of the interface, (m+x) being the actual concentration of hydrochloric acid in the adsorption film.

On the other hand, the rate of increase of hydrochloric acid in the bulk of the aqueous layer is equal to the amount which passes upwards in unit time through the diffusion film (D.F.). This amount is, however, proportional to the area of the interface S, the diffusion coefficient of hydrochloric acid D in water and the concentration gradient in the diffusion film whose thickness is δ :

$$V\frac{dm}{dt} = \frac{D\cdot S}{\delta}\left\{(m+x)-m\right\} = \frac{D\cdot S}{\delta}x \cdot \dots (2)$$

Solving this equation for x and putting the result in equation (1) we have

$$S\sigma \frac{dx}{dt} = H - V\left(1 + \frac{k\delta}{D \cdot S} + \frac{S\sigma}{V}\right) \frac{dm}{dt} . \qquad (3)$$

Differentiating equation (2) with regards to t and substituting equation (3) in it we have

$$\frac{d^2m}{dt^2} + \frac{D}{\delta\sigma} \left(1 + \frac{k\delta}{DS} + \frac{S\sigma}{V} \right) \frac{dm}{dt} = \frac{D}{\delta\sigma V} H. \quad \dots \quad (4)$$

As the solution of this differential equation we obtain

$$\frac{dm}{dt} = A - Ce^{-Bt}, \qquad (5)$$

where C is an integration constant and

$$A = \frac{H}{V\left(1 + \frac{k\delta}{DS} + \frac{S\sigma}{V}\right)}, \qquad B = \frac{D}{\delta\sigma}\left(1 + \frac{k\delta}{DS} + \frac{S\sigma}{V}\right). \dots (6)$$

But, since $\frac{S\sigma}{V}$ is very small compared with unity, equations (6) may be written in the form:

$$A = \frac{H}{V\left(1 + \frac{k\delta}{DS}\right)}, \qquad B = \frac{D}{\delta\sigma}\left(1 + \frac{k\delta}{DS}\right). \quad \dots \quad (7)$$

The relation between m and t is obtained by integrating equation (5)

$$m = At + \frac{B}{C}e^{-Bt} + K, \qquad (8)$$

where K is an integration constant.

Equation (8) was tested by comparing the calculated values of m with those observed. The results are very satisfactory as is shown in the following tables, in which N denotes the number of revolution of the stirrer per minute. The constants in equation (8) were computed in the following manner: The value of A which is equal to the reaction rate after sufficiently long time (cf. eq. (5)), can be directly known from the slope of the straight portion of the t-m curve shown for example in Figs. 2 and 3. Then by plotting the value of $\log (A-dm/dt)$ against the time t we obtain a straight line (cf. eq. (5)), whose slope gives the value of B, C being known from the point of the line on the abscissa.

18.0°C.
$$N = 109 \pm 2^*$$

 $A = 1.00 \times 10^{-6}$
 $K = 978 \times 10^{-6}$

t min.	$m \times 0^6$ (obs.)	<i>m</i> ×10 ⁶ (calc.)	Δ
0	980.8	978	-3
32	1014	1010	-4
72	1047	1050	+3
98	1071	1076	+5
128	1109	1106	3
163	1144	1141	-3
203	1179	1181	+2
248	1225	1226	+1

^{*} Continued from the last day.

$$30.0^{\circ}$$
C. $N = 62 \pm 2$. $A = 3.90 \times 10^{-6}$, $B = 0.00440$, $C = 1.897 \times 10^{-6}$, $K = -260 \times 10^{-6}$,

t min	$\begin{array}{c c} m \times 16^6 \\ \text{(obs.)} \end{array}$	m×10 ⁶ (calc.)	Δ
0	173.4	172	-1
18	199.3	198	-1
22	218.3	218	0
33	242.4	242	0
45	270.6	270	-1
55	293.0	294	+1
66	319.4	320	+1
77	346.7	348	+1
92	385.8	387	+1
1:10	434.8	435	0
125	476.4	477	+1
143	526.9	528	+1
163	586.0	587	+1
179	633.4	634	+1
194	680.6	681	0
208	723.8	725	+1
227	787.2	785	-2
246	846.3	846	0
267	914.7	914	-1
280	957.9	958	0
I	1		l i

$$\begin{array}{ll} 30.0^{\circ}\text{C.} & N=0.\\ A=1.69\times 10^{-6}, & B=0.00352,\\ C=0.689\times 10^{-6}, & K=-22\times 10^{-6}. \end{array}$$

min.	m×10 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ
0	170.7	173	+2
23	199.3	197	-2
52	230.2	229	-1
74	251.3	254	+3
100	285.4	284	-1
122	313.1	311	-2
146	340.3	342	+2
168	370.2	370	0
]		<u> </u>	

$$\begin{array}{ll} 30.0^{\circ}\text{C.} & N=62\pm1. \\ A=3.82\times 10^{-6}, & B=0.00440, \\ C=1.910\times 10^{-6}, & K=-260\times 10^{-6}. \end{array}$$

t min.	m×10 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ
0	175.3	175	0
20	213.2	214	+1
47	270.6	273	+2
68	318.6	322	+3
95	391.4	389	-2
117	447.3	447	0
143	521.8	518	-4
170	595.5	596	0
192	661.8	661	-1
220	743.4	745	+2
241	805.7	811	+5
268	893.7	898	+4
294	975.0	982	+7

30.0°C.
$$N = 60 \pm 2.*$$

 $A = 3.77 \times 10^{-6},$ $K = 4219 \times 10^{-6}.$

$t \\ min.$	$m \times 10^6$ (obs.)	m×10 ⁶ (calc.)	Δ
0	4215	4219	$\begin{array}{r} +4\\ +6\\ -6\\ -5\\ +11\\ -13\\ +12\\ -17\\ -14\\ +11\\ -21\\ +28\\ +5\\ -4\end{array}$
18	4281	4287	
42	4383	4377	
66	4473	4468	
85	4528	4539	
104	4624	4611	
121	4663	4675	
140	4764	4747	
163	4848	4834	
193	4936	4947	
215	5050	5029	
253	5145	5173	
273	5243	5248	
295	5335	5331	
319	5425	5422	$-3 \\ +5$
346	5518	5523	

 $\begin{array}{ll} A = 4.01 \times 10^{-6}, & B = 0.00449, \\ C = 1.845 \times 10^{-6}, & K = -224 \times 10^{-6}. \end{array}$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t min.	m×16 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 36 55 73 92 111 137 154 171 188 206 224 241 262 281	224.5 269.2 314.9 361.7 421.5 476.4 553.5 598.8 656.1 706.0 765.2 823.9 876.6 946.2	225 270 318 366 417 471 548 600 653 707 765 824 881 953 1018	$ \begin{vmatrix} 0 \\ +1 \\ +3 \\ +4 \\ -5 \\ -6 \\ +1 \\ -3 \\ +1 \\ 0 \\ 0 \\ +4 \\ +7 \\ +3 \end{vmatrix} $

^{*} Continued from (62±1) over a night.

30.0°C. $N = 111 \pm 4$.

 $\begin{array}{ll} A = 4.03 \times 10^{-6}, & B = 0.00640, \\ C = 1.688 \times 10^{-6}, & K = -89 \times 10^{-6}. \end{array}$

30.0°C. $N = 161 \pm 5$.

 $A = 4.15 \times 10^{-6}, \qquad B = 0.00972, \ C = 1.852 \times 10^{-6}, \qquad K = -26 \times 10^{-6}.$

	,		
t	m×106	m×106	Δ
min.	(obs.)	(calc.)	
0	176.7	175	-2
14	210.7	209	-2
25	236.2	237	+1
35	260.9	263	+2
45	288.3	290	+2
55	313.1	317	+4
66	347.5	350	+2
79	387.2	388	+1
89	416.7	419	+2
102	457.6	459	+1
114	493.6	497	+3
126	534.6	537	+2
137	573.1	573	0
150	617.0	616	-1
163	660.1	661	+1
173	693.6	695	+1
182	728.6	726	$ \begin{array}{c c} -3 \\ -2 \\ -1 \end{array} $
194	770.5	769	-2
204	805.7	805	-1
219	860.2	859	-1
245	956.1	953	-3
258	1002	1002	0
278	1074	1076	+2
292	1130	1129	-1

t min.	m×10 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ
0	165.0	165	0
20	212.8	211	-2
43	277.4	278	+1
64	340.3	342	+2
83	401.4	403	+2
107	485.7	485	-1
142	608.8	611	+2
163	685.8	. 689	+3
181	757.9	758	0
202	840.4	839	-1
225	928.5	929	0
247	1015	1016	+1
267	1094	1096	+2
288	1173	1171	-2
310	1274	1269	-5
333	1366	1364	-2

^{30.0°}C. $N = 101 \pm 5$.

 30.0° C. $N = 209 \pm 3$.

 $A = 4.36 \times 10^{-6}$, B = 0.00979, $C = 1.709 \times 10^{-6}$, $K = -10 \times 10^{-6}$. 30.0°C. $N = 214 \pm 8$.

 $A = 4.31 \times 10^{-6}$, B = 0.00921, $C = 1.796 \times 10^{-6}$, $K = -11 \times 10^{-6}$.

Δ	$m \times 10^6$ (calc.)	$m \times 10^6$ (obs.)	min.
-1	166	166.5	0
0	196	195.7	11
0	228	228.3	22
0	255	254.9	31
+1	299	297.8	45
+4	336	332. 0	56
-1	388	388.6	71
-1	434	434.8	84
0	489	489.2	99
-2	530	532.0	110
0	579	579.2	123
+2	622	620.4	134
+3	670	667.4	146
+1	765	764.2	169
$-1 \\ -4$	806	806.9	180
-4	855	858,8	192
-1	912	913.1	206
0	970	969.8	220
+1	1016	1015	231
-1	1080	1081	246
-1	1143	1144	261

t	m×106	m×106	1
min.	(obs.)	(calc.)	Δ
0	184.5	184	-1
14	220.5	220	-1
38	288.3	290	+2
56	346.7	346	-1
85	441.9	442	0
102	505.0	505	0
120	569.0	571	+2
140	644.6	646	+1
159	718.1	719	+1
184	817.7	818	0
205	904.1	903	-1
224	978.4	979	+1
246	1068	1069	+1
268	1163	1161	-2
288	1245	1244	-1
305	1317	1316	1
325	1405	1400	-5

30.0°C. $N = 283 \pm 3$.

30.0°C. $N = 283 \pm 13$.

 $A = 4.55 \times 10^{-6}$, B = 0.01117, $C = 1.514 \times 10^{-6}$, $K = 48 \times 10^{-6}$. $A = 4.50 \times 10^{-6}$, B = 0.01117,

 $C = 2.084 \times 10^{-6}$, $K = -20 \times 10^{-6}$.

t min.	m×10 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ
0 21	187.3 190 250.2 249		+3 -1
41	316.7	313	-1
61 83	391.4 476.4	387 472	$-4 \\ -4$
105	567.8	568	0
127 149	660.1 750.6	657 750	$-3 \\ -1$
170 190	842.9 930.3	845	+2
214	1034	931 1034	$\begin{vmatrix} +1\\0 \end{vmatrix}$
236 259	1134 1231	1141 1228	+7 -3
281	1336	1340	+4
301 325	1423 1530	1423 1529	0
020	1990	1929	-1

min.	$m \times 10^6$ $m \times 10^6$ (calc.)		Δ
min. 0 11 23 35 48 60 72 84 108 121 135 151 166 182	(obs.) 166.0 194.8 230.7 264.1 304.4 346.7 391.4 476.4 521.8 573.7 628.3 690.9 756.8 822.6	167 195 228 264 304 346 388 431 476 522 573 628 695 756 824	+1 0 -3 0 0 0 -1 -3 -2 0 0 0 -1 0 0 0 +4 +1 +1
198 213 235	890.8 956.1 1049	892 956 1052	$\begin{bmatrix} +1 \\ 0 \\ +3 \end{bmatrix}$
253	1131	1129	$\begin{bmatrix} -2 \end{bmatrix}$

50.0°C. $N = 96 \pm 5$.

50.0°C. $N = 174 \pm 4$.

 $A = 24.31 \times 10^{-6}$, $C = 8.792 \times 10^{-6}$,

B = 0.0237, $K = 52 \times 10^{-6}.$ $A = 29.53 \times 10^{-6}$, $C = 11.00 \times 10^{-6}$,

B = 0.0283, $K = 13 \times 10^{-6}.$

min.	$m \times 10^6$ (obs.)	m×10 ⁶ (calc.)	Δ	
0	425.1	423	- 2	
15	674.2	677	+ 3	
44	1251	1253	+ 2	
65	1706	1712	+ 6	
79	2036	2029	- 7	
101	2539	2534	- 5	
125	3127	3110	-17	
145	3596	3589	- 7	
164	4040	4047	+ 7	
188	4632	4627	- 5	
210	5164	5160	- 4	
238	5826	5839	+13	
261	6403	6397	- 6	
283	6923	6933	+10	
307	7508	7515	+ 7	
331	8091	8098	+ 7	
358	8754	8756	+ 2	

t min.	$ \begin{array}{c c} m \times 10^6 & m \times 10^6 \\ \text{(obs.)} & \text{(calc.)} \end{array} $		Δ	
0	401.4	401	$ \begin{array}{c c} & 0 \\ & -1 \\ & +1 \end{array} $	
14	688.2	687		
24	918.1	919		
38	1269	1267	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{3}$	
54	1692	1692		
65	1998	1995		
105	3127	3134	$\begin{array}{c c} + 7 \\ + 4 \\ - 1 \end{array}$	
121	3596	3600		
138	4060	4059		
154	4559	4566	$\begin{array}{c c} + 7 \\ + 8 \\ - 3 \end{array}$	
177	5226	5234		
203	6012	6009		
223	6587	6600	$^{+13}$ $^{-11}$ $^{+4}$	
237	7023	7012		
262	7746	7750		
285	8433	8429	$ \begin{array}{r} -4 \\ +2 \\ -3 \\ -17 \end{array} $	
304	8989	8991		
325	9614	9611		
348	10310	10293		
370	11000	10293	-17 -57	

50.0°C. $N = 269 \pm 10$.

 $A = 33.64 \times 10^{-6}$, B = 0.0279, $C = 12.42 \times 10^{-6}$, $K = 50 \times 10^{-6}$.

50.0°C. $N = 269 \pm 10$.

(Continued)

	,		
min.	$m \times 10^6$ (obs.)	m×10 ⁶ (cale)	Δ
0	493.2	496	+ 3
11	744.0	748	+ 4
21	1015	1005	-10
36	1438	1424	-14
51	1893	1874	-19
63	2271	2246	-25
74	2569	2596	+27
87	2998	3016	+18
103	3523	3540	+17
116	3966	3971	+ 5
130	4420	4435	+15
141	4760	4803	+43
153	5164	5204	+40
ļ			

min.	m×10 ⁶ (obs.)	m×10 ⁶ (calc.)	Δ	
170	5719	5719 5773		
183	6220	6210	-10	
198	6699	6714	+15	
214	7268	7250	-18	
231	7788	7822	+34	
244	8258	8260	+ 2	
262	8880	8865	15	
288	9743	9739	- 4	
316	10730	10680	50	
337	11450	11390	60	
359	12100	12130	+30	
383	13010	12940	70	

Temp.	N	A×106	В	$C \times 10^6$	K×106
18.0°C.	109± 2*	100		_	978
30.0°C.	$\begin{matrix} 0 \\ 62 \pm 2 \\ 62 \pm 1 \\ 60 \pm 2^* \\ 101 \pm 5 \\ 111 \pm 4 \\ 161 \pm 5 \\ 209 \pm 3 \\ 214 \pm 8 \\ 283 \pm 13 \\ 283 \pm 3 \\ \end{matrix}$	1.69 3.90 3.82 3.77 4.01 4.03 4.15 4.36 4.31 4.55 4.50	0.00352 0.00440 0.00440 	0.689 1.897 1.910 — 1.845 1.688 1.852 1.709 1.796 1.514 2.084	- 22 260 260 4219 224 89 26 10 11 48 20
50.0°C.	96± 5 174± 4 269±10	24.31 29.53 33.64	0.6237 0.0283 0.0279	8.792 11.00 12.24	52 13 50

Table of Constants.

It will be seen from the above tables that the values of A and B increase not only with rise of temperature but also with the speed of stirring. And, moreover, the effect of stirring on A is more prominent at higher temperatures. On the contrary the same effect on B decreases with rise of temperatures, showing a tendency that B becomes independent of the speed of stirring at sufficiently high temperatures. These facts may be accounted for by equation (7) at least qualitatively, taking into considerations the fact that the const nts B and B have a property of reaction coefficient and B0, the thickness of the diffusion film, becomes smaller when the speed of stirring increases.

It is clear from the above data that the reaction is not of zero order as was mentioned by Harker. The reaction can be supposed quite naturally to be of constant velocity if we neglect the adsorption and assume the reaction to be completely irreversible. Nevertheless the result of experiments makes it necessary to assume the presence of an adsorption layer and the hindrance of reaction by adsorbed molecules.

The writers desire to express their thanks to Professor M. Katayama for the interest he showed in the work.

February, 1931.

Shiomi Institute for Physical and Chemical Research, Dojima, Osaka.

^{*} After sufficiently long time.